Copper regulation of hypoxia-inducible factor-1 activity.

نویسندگان

  • Wenke Feng
  • Fei Ye
  • Wanli Xue
  • Zhanxiang Zhou
  • Y James Kang
چکیده

Previous studies have demonstrated that copper up-regulates hypoxia-inducible factor 1 (HIF-1). The present study was undertaken to test the hypothesis that copper is required for HIF-1 activation. Treatment of HepG2 cells with a copper chelator tetraethylenepentamine (TEPA) or short interfering RNA targeting copper chaperone for superoxide dismutase 1 (CCS) suppressed hypoxia-induced activation of HIF-1. Addition of excess copper relieved the suppression by TEPA, but not that by CCS gene silencing, indicating the requirement of copper for activation of HIF-1, which is CCS-dependent. Copper deprivation did not affect production or stability of HIF-1alpha but reduced HIF-1alpha binding to the hypoxia-responsive element (HRE) of target genes and to p300, a component of HIF-1 transcriptional complex. Copper probably inhibits the factor inhibiting HIF-1 to ensure the formation of HIF-1 transcriptional complex. This study thus defines that copper is required for HIF-1 activation through the regulation of HIF-1alpha binding to the HRE and the formation of the HIF-1 transcriptional complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation.

Cellular oxygen partial pressure is sensed by a family of prolyl-4-hydroxylase domain (PHD) enzymes that modify hypoxia-inducible factor (HIF)alpha subunits. Upon hydroxylation under normoxic conditions, HIFalpha is bound by the von Hippel-Lindau tumor suppressor protein and targeted for proteasomal destruction. Since PHD activity is dependent on oxygen and ferrous iron, HIF-1 mediates not only...

متن کامل

COMMD1 Promotes pVHL and O2-Independent Proteolysis of HIF-1α via HSP90/70

BACKGROUND The Copper Metabolism MURR1 Domain containing 1 protein COMMD1 has been associated with copper homeostasis, NF-kappaB signaling, and sodium transport. Recently, we identified COMMD1 as a novel protein in HIF-1 signaling. Mouse embryos deficient for Commd1 have increased expression of hypoxia/HIF-regulated genes i.e. VEGF, PGK and Bnip3. Hypoxia-inducible factors (HIFs) are master reg...

متن کامل

Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1.

Cobalt inhibits prolyl hydroxylases, leading to the accumulation of hypoxia-inducible factor-1α (HIF-1α) and a concomitant increase in the transcriptional activity of HIF-1. Therefore, cobalt has been under development as a drug for activating HIF-1 under some disease conditions. However, it has been shown that ischemic conditions resulted in the loss of copper, and the activation of HIF-1 woul...

متن کامل

Copper Deficiency Induced Emphysema Is Associated with Focal Adhesion Kinase Inactivation

BACKGROUND Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK). METHODOLOGY To ...

متن کامل

Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia.

Genes with G/C-rich promoters were up-regulated in the duodenal epithelium of iron-deficient rats including those encoding iron (e.g. Dmt1 and Dcytb) and copper (e.g. Atp7a and Mt1) metabolism-related proteins. It was shown previously that an intestinal copper transporter (Atp7a) was co-regulated with iron transport-related genes by a hypoxia-inducible transcription factor, Hif2α. In the curren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 75 1  شماره 

صفحات  -

تاریخ انتشار 2009